If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3x2 + -50x + 683 = 0 Reorder the terms: 683 + -50x + 3x2 = 0 Solving 683 + -50x + 3x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 227.6666667 + -16.66666667x + x2 = 0 Move the constant term to the right: Add '-227.6666667' to each side of the equation. 227.6666667 + -16.66666667x + -227.6666667 + x2 = 0 + -227.6666667 Reorder the terms: 227.6666667 + -227.6666667 + -16.66666667x + x2 = 0 + -227.6666667 Combine like terms: 227.6666667 + -227.6666667 = 0.0000000 0.0000000 + -16.66666667x + x2 = 0 + -227.6666667 -16.66666667x + x2 = 0 + -227.6666667 Combine like terms: 0 + -227.6666667 = -227.6666667 -16.66666667x + x2 = -227.6666667 The x term is -16.66666667x. Take half its coefficient (-8.333333335). Square it (69.44444447) and add it to both sides. Add '69.44444447' to each side of the equation. -16.66666667x + 69.44444447 + x2 = -227.6666667 + 69.44444447 Reorder the terms: 69.44444447 + -16.66666667x + x2 = -227.6666667 + 69.44444447 Combine like terms: -227.6666667 + 69.44444447 = -158.22222223 69.44444447 + -16.66666667x + x2 = -158.22222223 Factor a perfect square on the left side: (x + -8.333333335)(x + -8.333333335) = -158.22222223 Can't calculate square root of the right side. The solution to this equation could not be determined.
| .83s+.375=.666 | | 6y-6=60 | | 6(-4p+7)+6=96 | | .83+.375=.666 | | 21x^2-22xy+5y^2=0 | | -4.65+0.19=14.92 | | 18x-88=180 | | -7x+2=-26 | | 5/12x-35=0 | | 3*x+8=-48 | | 2xy=12 | | V=qxt | | 8=d+3/7 | | 7(x+9)-10x=42 | | 9x^2+30x+-35=0 | | (8-p)-(7-p)=22 | | 1/8(24x-32y+40Z) | | 1200=800+200y-300y | | 26-(4x-11)=10(3y+17)-40 | | 5u+10=3u+36 | | 1200+200y-300y=800 | | 6x=27/3x | | 1200-300y=800+200y | | x^2+y^2+2x-4y+3=0 | | 0.8x-0.3x+4=-3 | | (w-7/6)+(w+7/7)=16/21 | | 5(6x-5)=30x-25 | | 18=7x+6-3x | | 7(1-q)=-3(5+2q) | | 5+2/6+i | | 2q-5=3 | | 5/3+2/3x=31/15+8/5x+3/5 |